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Forces and moments are calculated for the interaction between phases in the non- 
stationary flow of a moderately concentrated suspension of small spheres; the 
equations of motion are derived in closed form. 

The behavior of suspended particles in a nonstationary flow of a viscous liquid is sub- 
stantially different from that in a steady-state flow; there are various inertial forces 
related to the interaction between the particles and the medium (see [i, 2] for a discussion 
of these forces), and these forces have a marked influence on two-phase turbulent flows [3]. 
The forces are also important in many applications, particularly ones requiring acceleration 
of exchange processes. One example is that of a fluidized bed subject to pressure fluctua- 
tions or changes in flow rate of the fluidizing agent, while another is a granular bed 
fluidized by vibration, such as is used in chemical technology, power engineering, and so 
on. There are also nonstationary effects arising in the passage of acoustic and shock waves, 
which can accelerate coagulation in polydisperse media, which is important not only in ac- 
celerating the elimination of small gas bubbles from liquids or causing suspensions to sedi- 
ment, but also in other artificial systems such as rocket-motor nozzles [4] and natural sys- 
tems such as thunderclouds [5]. 

The nonstationary flow of a suspension is here considered by methods briefly presented 
elsewhere [6], which have been applied to stationary flows in [7]. For definiteness we as- 
sume that the suspension meets all the requirements stated in the latter~ namely, the Rey- 
nolds number for an individual spherical particle of the dispersed phase is small, while 
external moments are absent, and the mean suspension is constant in space and time and is 
not too high; thus, we can neglect effects arising from particle overlap within the frame- 
work of the method of [6, 7]. This is quite reasonable [7] for moderately concentrated sus- 
pensions (p < 0.20-0.25). 

Also, it is found [8] that there is a frequency dependence of the effective viscosity 
and of the other rheological parameters, i.e., the values shown by the parameters in a har- 
monic flow are dependent on frequency. Consequently, the various dynamic quantities for a 
nonstationary flow will be functionals of the kinematic variables. This means that memory 
effects occur, i.e., the history of the motion affects the situation at a given moment, which 
is commonplace for many homogeneous non-Newtonian media [9]. The effects are important even 
for single particles, because they give the Basset component, namely, forces acting on a 
particle from the medium [i0]. Analogous phenomena occur in nonstationary heat- and mass- 
transfer processes in dispersed media [Ii]. 

We restrict consideration initially to monodisperse suspensions. The convective coordi- 
nate systemx is related to the center of the test particle, and the conservation equations 
for mass and momentum of the suspension as a whole and for the disperse phase take the fol- 
lowing form subject to the assumptions of [6, 7]: 

Vv = o, ao~-~- + ~tp - ~ -  = VO - -  dv ( r  + ~'), 

Vv~=O, . av~ =f--dlpv(~+~ 
alp @t 
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(these readily yield the corresponding equations for the continuous phase). Here the mean 
density and speed of the suspension are 

d = ~ d  o+9d  t, v = ~ % + p v i ;  (2) 

the potential of the inertial forces in this coordinate system is 

= x t - - - d / - j ~ = o ~  x + (ctv) c~ ~=o ' ( 3 )  

and the mean force f due to the interaction between the phases and the divergence of the 
tensor ~ for the mean stresses take the following form [6, 7]: 

= n ~ (n~)  dx, w = - -  ~ p  + ~oAV + n v  ~ x �9 (nZ) a x ,  (4 )  
x - = a  X.==a 

where an asterisk denotes dyad multiplication of the vectors. Equations (1) and (3) become 
those of [7] for steady-state flows; the forms of (2) and (4) remain as before. 

Note that the velocity and acceleration of the disperse phase at x = 0 are zero by 
definition. The orders of the spatial derivatives of the velocities for the two phaees are 
identical and equal to Ivo{/L, where L is the spatial scale of the motion. Therefore, at 
distances of the order of a from the test particle we have 

t v ,  t "" (a /L)  t % l << I vol �9 ( 5 )  

A priori we expect frequency dispersion in the rheological parameters, so it is con- 
venient to use a Fourier transform applied to the variables, as in [ii], which is equivalent 
to considering an oscillating harmonic flow with a fixed frequency % and 3/~t replaced by 
i%. For simplicity, no distinction is drawn between the Fourier transforms of the various 
quantities and the originals. 

The general method [6] gives us the Fourier transforms as 

f = k, (v o - -  v 0 + kzAv o + k3v (~  + ~), V o : - -  VP + kAvo, (6) 

where k and k i are certain coefficients not known a priori, which may also be dependent on 
%; the form of (6), in general, is not known in advance and must be derived from very general 
arguments, in which one incorporates the linearity of the equations of motion and also the 
dependence on quantities differing in tensor dimensions that, in principle, may contr~l f 
and 7~. The exact form is verified and if necessary corrected subsequently by means of self- 
consistency conditions, which constitute specifications for the identity of (4) and (6). 

On substituting (6) into (i), we see that the motion of the suspension can be simulated 
as that of a fictitious incompressible homogeneous liquid whose velocity is that of the con- 
tinuous phase, while the viscosity (in this harmonic flow) is k. Then the inertial density 
is approximately equal to dos by virtue of (5), while the gravitational density is d. The 
equation for the conservation of momentum of this liquid derived from (i) and (6) implies 
that 

Zdo ,'-. [ k I/L z ,--, M/L 2. (7) 

Parameters k and k i are derived from the self-consistency conditions, and explicit ex- 
pressions are required for the stresses E appearing in the integrands of the surface inte- 
grals in (4). The latter can be derived from the solution for the flow around a test parti- 
cle [6, 7]. Let v~, v~, and p* be the distributions of the velocity and pressure as per- 
turbed by the test particle, for which we have equations of the same type as (I) and (6); 
(5) still applies. We also use (7) and the fact that the spatial scale of the perturbed 
fields is a to obtain 

Z4I v3 I "" rt I v# [/L 2 << M I Av~ I, %doaZ/M <( 1, (8) 

which shows that the nonstationary term on the left-hand side of the momentum-conservation 
equation for the fictitious medium is a small quantity of higher order in the parameter ~/L. 
We restrict consideration to small quantities of second order in this parameter and use (5) 
to obtain the result for the flow around the test particle as 

Vv~ : 0 ,  i%doev ~ = - - V p *  + k A v ~ - - d  V ( ~ + ~ ) ,  (9) 

vo  = ~ • x (x = a), v~,  p* - +  Vo, p ( x ~  oo), 
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where the unperturbed fields Vo and p satisfy equations following from (i) and ~6). The 
problem of (9) is a particular case of that examined in [8]. We determine the stresses in 
the flow of the fictitious medium, which is defined by (9), in standard form for a viscous 
liquid [10] and then calculate the integrals in (4) via the solution of [8] to obtain 

____( .') f pd v ( O + ~ ) 4 -  9 P k 1+[3  [3 ~ ( % - - v d  ' ' 2 a z ' --3-- T 

+ --2 --~2 k e~ - -  1 + [3 ', 31 [~z Avo, 

5ok 1 + [~ + + Avo + V ~ = - - V P +  ~oAV + 2(1 +[3) 5 

(10) 

+ ~,,(1 +p) +--g- p'+i-[g-t~ 3 a~Vo, (11) 

where the parameter is 

~2 = i~.4~z/k. (12) 

The equation for the conservation of momentum of the disperse phase gives us from (I) 
by means of (5) and the expression for f in (6) that 

V, = v o + ] k-~- Avo-+- k3 - -  dip v ((D + "iF). (13) 
ki 

Since A(7~) = 0 by virtue of the definition of ~ in (3), we assume for simplicity that 
A(7~) = 0 (although all the results are readily generalized to the case where this is not 
so), and we use A[--Vp --dV(@ + ~)] = O, which follows directly from (i) and (6), to get from 
(2) and (13) that 

~2 ( [32 k%..) (14) A2vo= a2 Avo, A v =  l + p  a 2 kt Avo. 

Up to terms of the second order in a/L inclusive [or up to terms of the first order in 
1812 , which is the same by virtue of (7) and (8)], we have that k~/k~ in (14) should be ex- 
pressed up to terms of zero order in this parameter, which can be done by means of the 
results of [7] (see also below). We have ka/kl = aa/6, so the expressions for 7~ in (6) and 
(Ii) give us with (14) that 

k (  1 -  52 P ' -r P,  _e~ '~ = ~o (1 -}- + p[~2) �9 (.15) 

We use (12) to obtain with the required accuracy that 

Po T = p~ + 4 (I--2.59 k=g+i)~T, p~= 1- -2 .5p '  

where ~ is the effective viscosity of the suspension in a state of steady flow, which has 
been calculated [7], while the term containing T denotes the frequency dispersion of the 

viscosity. 

We now compare the expressions for f in (6) and (i0) and use (12) and (16) to obtain 
the following representations for the ki: 

9 ~o 9 3 3 k, = -~- pK, (P) -~- + -~- oK2 (P) V i"~doaZ~to + ~ pK~ (p)iLdo, k~ = ~ pK, (p) ~o, ka = pd, (17) 

1 K 2 ( P ) -  ( 1--p '~,/2 
Kt (P) =1 - -  2 .5 - '~9  ' 1 - -  2.50/ ' 

K3 (o) = (1-- p) l + p  --U+4(l__2,Sp) . 
(18) 
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The functions Ki(P) describe the effects of the hindered flow on the various components of 
the force on the particles, and they all become unity as p § 0; also, ~7) coincide with 

the formulas of [7] as % + 0. 

We convert from the Fourier transforms in (17) to the originals by means of the tech- 
niques of [i0] and use the laboratory coordinate system instead of the convective one to 

obtain the following representation for the phase-interaction forces referred to the parti- 
cles in unit volume: 

f 

f= 9 2 ~176 ~~ (c~176 +T~ ~a~ / -b7 +c,v (Co-C0 Vt----~ 

The first term here clearly describes the effective viscous force, while the se(:ond 
corresponds to the Basset force in hindered flow, which is dependent on the previous history; 
the third represents the effective force arising from the acceleration of the interpl~se 
slip and, in particular, it is related to the adjoint mass; the fourth term corresponds to 
the Faxen force, and the fifth describes the effective buoyancy, which is due in part to 
the external mass forces and in part to the inertial forces of (3). Finally, (19) be~comes 
a standard expression long known for dilute suspensions for single particles as p § O. 

It is of interest go compare (19) with results [10, 12] for a single particle i[r the 
nonviscous approximation in the absence of external mass forces; the force F = f/n acting 
on a single particle is found from (19) with 0 = 0, ~o = 0, and ~ = 0 as given by the equa- 
tion 

M d_u.u = d r  . . . .  21 Mo(dUdt ~ 1  ~M~ d c d t  ~ , (20) 

where u and M are the velocity and mass of a particle, while c and M0 are the velocity mass 
of the liquid in the particle volume, which is precisely the equation given in [I0, 12j. 

We now write the equation of motion in the laboratory coordinate system r; (7) shows 
that allowance for the frequency dispersion of the viscosity is unnecessary, because this 
would represent exceeding the available accuracy. Therefore, simple transformation of (i) 
gives us the equation for conservation of the momentum of the suspension as 

) (+ ) 
The equation for the conservation of mass that supplements (21) is of the form Veo = 3 for 
a macroscopically homogeneoussuspension whose concentration is not dependent on time; how- 
ever, it is readily shown that the above results, in particular, (21), are correct al~3o in 
the case where p is dependent on time if the equation for the conservation of mass fo:= the 
continuous phase takes the form 

as 
Ot ~sVC o = O. (22) 

The equations for the conservation of momentum and mass for the dispersed phase can be 
put as follows: 

O--~-P-~ P V C i o t  = O, d i P ( ~  + ctv) c t ~ f--  dtPv~, (23) 

where f is  defined by (19); the unknown variables in (21)-(23) are p, p, co, and c~. 
It is more difficult to generalize the results to inhomogeneous systems on accour.t of 

the occurrence of the additional vector Vp, which characterizes the situation at some point 
in the flow and which can also occur in (4). However, if we neglect the additional terms 
proportional to Vp in (4), we can still write the equations readily for the case where 0 is 
dependent on time and on the coordinates [6]. 
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In principle, it is possible to consider components of f and Y~ of higher orders in 
a/L; the main difficulty then is that we cannot use (5), which simplifies the calculations 
considerably. The result would be equations of motion that contain time derivatives of 
order higher than the first, which describe various relaxation effects (such equations have 
been derived for heat and mass transfer [11]). However, the desirability of such a general- 
ization is, at present, very doubtful, not only because of the specific features of the 
motion in a two-speed disperse medium, but also because of the uncertainty arising in using 
asymptotically correct equations to describe oscillating flows even for single particles 
[13]. 

We now determine the moment resulting from the phase interaction; we use the results 
of [8] to obtain that 

l ) d t,( , I rot c o --  m § 6paZdo-~ Oi (P) 2 m = 6pK, (p)go 2 

G I ( p ) = ( I - - P ) [  21"~-- -F P ( I  -F 

6~ (~)) = (1 - -  p) + P T + 

rof c o --  G2 tP) r ) , 

4 (1-- 2,5p) ' 

5 
4 (1--2.5p))] " 

(24) 

(25) 

This shows that adjoint-mass effects are also important in particle rotation. The adjoint- 
mass coefficients are determined in relation to the rotation of the particle by the external 
flow or in terms of the inherent rotation; the two differ somewhat. 

In conclusion, we note that all of these results are readily transferred to polydis- 
perse suspensions. This generalization has been considered in detail elsewhere [7], so it 
is not repeated here. 

NOTATION 

a, particle radius; a, velocity in laboratory coordinate system r; d, density; f, phase- 
interaction force; G i, functions defined in (25); Ki, functions defined in (18); k, ki, co- 

efficients in (4), M, Me, mass of a particle and mass of liquid in particle volume; m, phase- 
interaction moment; n, numerical concentration of particles; n, unit vector of external nor- 
mal; p, pressure; u, particle velocity; v, velocity in the convective coordinate system x 
linked to the center of a test particle; B, parameter in (12); ~ : 1 -- p; ~, viscosity; p, 
volume concentration of suspension; a, E, stress tensors; r potential of external mass 
forces; ~, inertial force potential defined in (3); m, angular velocity of particle rotation. 
Indices: O, l, continuous and dispersed phases, respectively; *, fields perturbed by a test 
particle. 
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